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I .  Phys. A: Math. Gen. 28 (1995) 46694578. Printed in the UK 

Non-equilibrium layered lattice gases* 

J J Alonso, P L Garrido, J Marro and A Achahbar 
Instituto Carlos I de Fisica Tdrica y Computacional, and Departamentos de Fisica A p l i d a  y 
Modema, Facultad de Ciencias, Universidad de Granada, B18071-Granada, Spain 

Received 1 November 1994 

Abstract. We have studied several nonquilibnum lattice gases with paniclexonsening 
dynamics. The lattice consists of two planes, and particles interact (mad) only with nearest- 
neighbour particles within the same plane but may hop to the other. In addition to the standard 
heat bath at temperalure T, a mechaoism exists that biases a principal axis, namely. we 
assume either that particles are also driven by a constant field, or else that exchanges along 
the given axis occur completely at random as governed by an additional heat bath at infinite 
temperature. Kinetic mean-field theory and high-temperature series expansions reveal some 
interesting properties of steady states which we compare with the case ofthe plane. In panicular, 
the system exhibits at T' the strong phase transition reported for driven gases, and also phase 
segregation below T' < T' whose nature varies with a dynamical rule. 

1. Introduction and delinition of models 

The systems of interest entail two identical square lattices placed back to back at a distance 
apart equal to the lattice spacing; they are denoted A AI U Az, where A1 r l  A2 = 0 
and A = hl = A2 = 2'. Let [AI and IAI = 2[Al represent the volumes. The 
configurations are U = [U,; + E A)  and ui = {U,,;+ E Ai], with U, = 0,1, i = 1,2. 
Therefore, p = /AI-' E,,,, U? and pi IAi1-l Era U? are densities. The two boxes 
are uncoupled, i.e. the total configurational energy is H A (U)  = H ( d )  + H ( u z ) ,  where 
H ( u )  = -45 uru8 is the ordinary Ising Hamiltonian; here, IT - 81 = 1 indicates 
that T and s are a pair of nearest-neighbour (NN) lattice sites. The equilibrium properties 
of A can be related to those of A so that they are well understood (Achahbar et a1 1995a). 
However, OUT concem here is on non-equilibrium steady states. 

A non-equilibrium condition may be induced in A as, for example, in the driven lattice 
gas (DLG) (cf Ganido et a1 199Oa, Spohn 1991, and references therein). That is, one may 
assume that the probability of configuration U at time f satisfies the master equation 

ap(u; t ) / a t  = [c(P; +, S)P(UY t )  - C(U;  +, S)P(U; t)i (1.1) 
Ir-.+l 

where ups represents U with the occupation variables at r and s exchanged, and the 
transition probability per unit time (rate) for that exchange is given by 

(1.2) 
Here, j3 = ( k ~ T ) - l  is the inverse temperature, Ir - SI = 1 , and i is a unit vector along a 
given principal direction within the plane (then, j and ,& are the unit vectors perpendicular 

c(u ;  r ,  s) = &[pH A (urs) - p H  A (U) - Ei . (P - s)(q - u~)]. 
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to i that belong to the plane, and points on the other plane, respectively). The function 
Q ( X )  is arbitrary, except that Q ( X )  = e-'Q(-X) so that the problem precisely reduces 
to the equilibrium problem for E = 0. One may interpret that time evolution proceeds 
by stochastic jumps of particles to NN empty sites, including jumps from one plane to the 
other, and that a driving field E;, which is constant both in time and in space, adds up to 
the heat bath at temperature T ;  consequently, a net steady dissipative current sets in for 
appropriate boundary conditions. Particle number is conserved during this evolution. The 
resulting system, to be denoted A", has been studied by the Monte Carlo (MC) method 
(Achahbar and Marro 1995) for E -+ 00 and Q(X) = min[ I ,  e-'] (the latter corresponds 
to the Meeopolis algorithm for E = 0). 

Alternatively, one may produce non-equilibrium steady states in A by taking (Ganido 
etai 1990b) 

for the rate in (1.1) instead of (12). Here, Q(X) = e-'@(-X). That is, exchanges occur in 
this system, to be denoted A', completely at random (as induced by a heat bath at infinite 
temperature) along the fZ directions and at temperature T otherwise. It is clear that AT has 
some similarities with A E  for E --f 00. In fact, the latter may be interpreted as a particular 
case of AT lacking symmetry between the f0 directions in (1.3); this symmetry sometimes 
makes A' more convenient for computations. This is the main motivation to study A'. 
Particle number is also conserved during the time evolution of A'. 

We present some analytical results for both AE and A'. This paper is mainly devoted 
to a study of the former by a kinetic mean-field method and other means for arbitrary values 
of E.  This study has some practical interest. In particular, the consideration of two planes 
has been shown to be convenient for numerical studies of phase equilibrium (Achahbar et 
ai 1995a), and it may also help the understanding of the behaviour of multilayered systems. 
There is also a more specific motivation for the present study. We confirm below that, as 
observed first in MC experiments (Achahbar and Marro 1995), A" exhibits a phase transition 
at a low enough temperature which does not occur in the two-dimensional DLG (nor in the 
equilibrium case AE=O), and we have studied the influence ,of varying E and Q(X) on 
this phenomenon. The consideration of the other system, A', has allowed us a high- 
temperature series expansion in section 3 to enable us to make some conclusions about the 
nature of spatial correlations. This is probably the first time that these questions have been 
investigated analytically in layered, quart-hvo-dinensiomL, non-equilibrium lattice systems. 

2. Non-equilibrium phase transitions 

The methods applied before by Dickman (1987,1988) and Garrido eta1 (1990a, b) to square 
geometries have been adapted here to study the various phase transitions exhibited by A" 
and A'. We have been partially guided by MC observations. The MC study of A"-" had 
revealed the existence of two distinct transitions, as illustrated in figure 1. For p = 1/2, 
AE-" seems to exhibit a second-order (non-equilibrium) phase transition at T', and a 
first-order phase transition at T' c T'. Apparently, each plane of A"-" behaves at T' 
as an ordinary, two-dimensional DLG at its critical point (this statement is proved below). 
For p c 1/2, the situation is similar except that discontinuities also occur at T'(p), and 
both T' (p )  and T * ( p )  decrease with decreasing p. Moreover, the liquid for p c 1/2 does 
not completely fill one of the planes at low enough temperature but forms a compact strip 
which coexists with gar filling the rest of this plane and the other plane. 



Non-equilibrium layered fanice gases 4671 

Figure 1. Typical configurations in the two planes of AE-- from MC expedmenls (Achahbar 
and M m  1995) for p = 1 and, from top to bottom. T > T'. T' > T > T'. and T c T', 
respectively. The field acts vertically. 

A comment on some limitations of our method, which are related to the nature of the 
steady states, is in order. The mean-field'method used in part of our study is suited to the 
study of homogeneous states; it can only give a mean, sometimes incorrect description of 
the states for T' > T =- T', which are expected to be inhomogeneous. Ln particular, it 
gives no evidence, for p = l/2, of strips such as those in figure 1 but only homogeneous 
mean stutes. A test of stability under small density gradients reveals that such homogeneity 
is unstable; however, the same method predicts stable homogeneous states for T > T' (in 
fact, this is the procedure that we have used to estimate T' below). For p < 112, the 
method does not correctly describe any of the two different kinds of states with strips that 
are expected for T < T'. In contrast, for p = 1/2, one may estimate T*(< T') as the 
temperature at which and fi  are equal to each other as the system is heated up, starting 
from homogeneous distributions of different density at each plane. 

We also warn of the fact that some correlations between planes are neglected by 
our kinetic mean-field method. We do not expect this to be a good approximation for 
T' z T z T', which seems dominated by interplane currents (Achahbar et af 1995b); no 
attempt to describe this is made here. We are interested in T > T' and T < T" where the MC 
study suggests weak interplane correlations. The existence of slowly decaying correlations 
at high temperature is demonstrated in section 3, but the corresponding amplitude turns out 
to be sufficiently small to allow for our simplifying assumption. 
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2.1. Kinetic man-field tkeory 

The idea here is to reduce (1.1) to a few equations for the time evolution of mean local 
quantities by neglecting long-wavelength fluctuations and restricting correlations to those 
between a small number of sites. This is performed in practice by considering a small, 
compact domain of sites, say D, which allows for the elementary, anisotropic dynamical 
processes which occur in the system, and suppresses the correlations between the particles 
within D and those in the rest of the system. With this aim, one neglects the possibility of 
fluctuations within the surface of D in such a way that the resulting description corresponds 
to a first-order mean-field if only pair correlations within D are allowed. This is the case 
we have studied explicitly. 

F m  2. The part, CI, of the bacic domain D = CI @ Cz lying in plane one. The occupation 
variables at the interior sires (U, and uz) and at the uterior sites (~ i  and si with i = 1.2.3, 
as indicated) are also shown. The lwo possible orientations of this cluster with res@ to Ihe 
applied field are lo be considered. 

Consider a set, say CI, in plane one that comprises two interior NN sites whose 
occupation variables are denoted ut and az. and its six exterior NNS, as in figure 2. Then, 
consider a similar set of sites, Cz, placed back to back in plane two, and define the domain 
D = C1@ CZ. As indicated above, we assumed that, for a given configuration of the system, 
the probabilities for the configurations of these sets are related: p ( u ~ )  = p(crc,)p(ac,). 
Furthermore, we write 

where pi(sj, (11) and pi@;, uz), i = 1,2, j = 1,2,3, are the probabilities for the indicated 
occupation variables within Cj. Assuming (2.1) amounts to neglecting further correlations 
beyond the pair ones. Finally, consistency requires that we assume that the only dynamical 
processes are exchanges between any of the four pairs of interior NNs in D. Of course, one 
needs to consider the two possible different orientations of D with respect to the applied 
field. 

The quantities to be monitored within each plane, i = 1.2, are p i (+ )  = pi (where + 
stands for CT = I), and pi(+, +) which we denote either z,! or z: according to whether the 
pair ++ is parallel or perpendicular to E t ,  and there is conservation of p = 1/2(p, + h). 
Therefore, summing over all possible configurations of D leads (after some computer 
algebra) to five kinetic equations, and one may obtain the corresponding stationary properties 
by numerical integration. Further details of the method may be found in Garrido et a1 
(199Oa). 
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A main conclusion refers to the phase segregation that has been observed for p = 4 
below T* (cf figure 1). The present model predicts the existence of a phase transition for 
any value of E, such that Ip1 - p2l # 0 and z l  # zi, zf # zi for T < T*(E) ,  and p1 = p2 

and z! = zl, zf = zi for T > T*(E)  (cf figure 3). The asymmetry shown by the planes 
below T * ( E )  corresponds to the MC observation that condensation occurs in one of the 
planes only. T * ( E )  decreases with increasing E, with a well-defined limit for E -+ 03, 

and T'(0) equals the Bethe (equilibrium) critical temperahue for the square king model, 
as expected. 

il[>,, Z'.z*-: 
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Figure 3. Results f" kinetic mean-field equations for Ihe states af Low enough temperahue 
locating T'(E)  for p = f. pull squares UMeSpand to Monte Carlo data fmm Achahbar and 
Mmo (1995). and the temperahue locating the corresponding "ition of ht order is indicated 
by an arrow. (a) The density within each plane, p i ( + )  =pt .  as a function of temperature, for 
E = 0 (equilibrium) and E = m, as indicated. (b) The same for Lhe quantity pi(+.  +), which 
is a measure of the energy, denoted either z/ or 1: aceording to the direction of the bond (+ +) 
with respect to the field. 

E (b) E 

Figure 4. The field dependence of the transition tempenhues T' and T * ,  for p = 4, and for 
(a) the Kawasaki rate, @(X) = 1/(1 t ex), and (b) the Metropolis rate, $(X) = minIl.e-X). 
The latter induces the existence of a non-equilibrium uicrikal point at E. separating second- 
from lint-order phase bdnsitions. The function T'(E) for Ihe ordinary, two-dimensional ~ f f i  
obtained within the same approximation is also shown (curves IateUed A'). 

A more detailed study indicates the essential role played by the rate, i.e. the function 4 in 
(1.2). For instance, while the phase transition is of second-order for any E for the Kawasaki 
rate, namely, 4 ( x )  = 1/(1 +eX)  (figure 4(a)), the Metropolis rate #(x) = min{l,e-X] 
(figure 4(&)) induces the existence of a tricrifical point at fi; = 3.5 f 0.1. The latter 
separates a region of critical points for E c E, from a region of first-order phase transitions 
for E > Ec, in agreement with the MC Observation for E 4 W. Furthermore, we find that 
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T*(E)  decreases with E more markedly for the Metropolis than for the Kawasaki rates; cf 
table 1 for a comparison of critical temperatures for saturating fields. The singular behaviour 
exhibited by " * ( E )  at a few points in figure 4(b)  is a peculiarity of the function #(X) in 
this case. 

J 3 Alonso er a1 

Table 1. Transition temperatures (in uults of the corresponding equilibrium critical temperahwe) 
for p = 112 and saturating held, for different syslems and methods: MCM. Monte &lo 
simulation with Metropolis rate (from Achahbhbar etol (1995% b)); MFM, present meu.field theory 
for Metropoiis raw, and MFK. (the latter for Kawasaki mte). 

hE+m AE-m 

MCM MFM MFK MCM MfM MFI( 

T' 1.30 1.09 123 1.38 1.11 1.32 
T* 0.95 0.80 0.99 - - - 

Our method cannot describe T' > T z T ' (E)  well; it predicts a homogeneous 
disordered state above T*(E)  in which p = PI = p2, zr = 2:. and z: = z:. 

2.2. StabiLify of the high-temperature phase 

We have also studied the high-temperature phase transition which occurs for p = f at 
T' (cf figure 1) by examining the response of the homogeneous solutions obtained by 
applying the preceding method to a small density gradient. Given our assumption about 
the lack of interplane correlations for T z T', it reduces to the study of one plane (which 
is characterized by p = 4. zli and z'), as done previousIy by Dickman (1988) and Garrido 
et al (199Oa), except that particles may now hop to the other plane. The essentials of the 
method are as follows. 

First, one makes the assumption that the transition at T' is (for p = f )  of second-order, 
as observed in MC experiments for E -+ M. Next, one modifies the known solution by 
introducing a density gradient V p  along 3, i.e. transverse to the field. This transforms 
the state (p  = $, zll, zL) into (p',  zn', z"). This may be performed in practice as follows. 
Consider the cluster in figure 2 with the field acting vertically. Then, for pairs such as (SI, si) 
that are within the row e parallel to the field, one takes p(+, +) = zl - (5 - 2t)Vp and 
p ( - ,  -) = zll + (5 - 2t)Vp.  while p(+ .  -) = p ( - ,  +) = 4 - zll remains unchanged; 
for pairs that are perpendicular to the field within the column k ,  one takes instead 

and p ( - ,  +) = f - zil + V p .  This amounts to introducing a gradient 2Vp; V p  is typically 
taken equal to The next step is to compute the new probabilities for p ( p D )  as 
indicated in (2.1). Then, the transversal particle current, 

p(+ ,  +) = 2' - 2(2 - k ) V p ,  p ( - ,  -) = 2' + 2(2 - k ) V p ,  p(-,  +) = f - 211 - Vp, 

JL = &D(u~ - u&(g; p. ~ ) P ( U D )  0 .  (T - S) = 0 (2.2) 
is estimated for the transformed state. If JL tends to cancel out V p ,  we interpret that 
the original homogeneous state is stable, i.e. the given solution corresponds to T > T'; 
otherwise, the solution is assigned in general to the region T* c T -= T' where strips form. 
The case JI. = 0 is expected to correspond to T'(E).  

This method produces the values for T ' (E)  reported in figure 4 for two different rates; 
in particular, it is observed that T'(E)  increases with E. Alternatively, figure 4 includes 
a comparison between the present case of A E  with two planes and the ordinary two- 
dimensional DLG (denoted bE here). As first observed in MC experiments for E + M 
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(Achahbar et al 1995b), the function T ' (E)  differs slightly from one case to the other, i.e. 
T'(E)  remains smaller than the corresponding critical temperature for the plane for any 
E > 0. This interesting result is discussed further in the next subsection. 

0.33 r I d  

0.30 1 \\ 

-. 
SJ .. ..._____ -.._ .._ '.. -. 

0.27 

0 3 6 
E 

Figure 5. The field dependence at temperature T = 3.2 of the function p ( + . i )  for pairs 
parallel (d) and perpendiculx ( z l )  to the field, as indicated: (a) for the Metropolis mte (&U 
curve) and for the Kawssaki rate (broken curve), and (b) a camparSon for the Kawasaki rate 
beween the cmes of one ( A E )  and two ( A E )  planes. 

Figure 5(a) illustrates the behaviour at high temperature with E of z" and zi for the two 
rates considered; it is observed, in particular, that zll > z', as expected on simple grounds. 
Figure 5(b) compares, for a given rate, the behaviour of p(+, +) for A E  and hE. The 
curves for 2.' in figure 5 clearly illustrate the role of the field in producing anisotropies, and 
the comparison between the two cases in figure 5(b) illustrates some essential differences. 
That is, p(+, +) is smaller for any E for hE than for LE, and zfl and z' are closer to each 
other for A E .  In other words, the possibility of the hopping of particles to the other plane 
tends to decrease anisotropies. 

2.3. AE and hE compared 

The origin of the observed differences in T' (E)  and p(+, +) between the case of one and 
two planes deserves a comment. Let us consider a domain D consisting of five sites within 
each plane of AE such that the central ones are NNs. That is, bo = {ul, si; uz, sj;  j = 
1,2 ,3 ,4) ,  where U, and u2 correspond to NN sites each at different plane, and sj and sj 
are the occupation variables corresponding to NN sites of u1 and oz. respectively. The time 
variation of any quantity, say fi, due (only) to interplane exchanges is 

where A@ and AH = 4pJ(oI - uz)Cj(sj - s j )  denote the associated variations of f i  and 
energy H A (m). One expects that, in so far as one considers disordered states at high 
enough temperature, the two planes are equivalent, and the interplane exchanges cannot 
modify isotropy within each plane; i.e. z = z\ = z: = zi = zk. Consequently, we have to 
deal with two independent equations. One of them simply corresponds to conservation of 
p = 1/2 by interplane exchanges. The other is 
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The only solution of this equation is z = p(1 t e-'f')-' which is the equilibrium solution 
for hE=O within the present approximation. 

Summing up, aw/at  is for A E  the sum of (2.3) and two more terms that describe 
the particle-bole exchanges within each plane, and only (2.3) is independent of E. The 
stationary solution for one plane cancels out the plane terms for any E > 0, while it causes 
(2.3) to vanish only for E = 0. Therefore, ap/at = 0 for t --f CO due to cancellations 
between the three terms, and any quantity & is different whether one considers A E  or hE 
for any E z 0. 

J J Alonso et a1 

3. Non-equilibrium correlations 

The method in this section consists of performing a high-temperature series expansion of 
the master equation, as in Ganido et ai (199Ob), where we refer for further details. 

One has from (1.1) that 

ac,(r)/at = C (aD(u8~, ,  - i)c(o; S,  8')). (3.1) 
lIs-8'1=l:s€D,s'#Dl 

Here, Gn(r) = (uD),  UD 5 U,,, u7, D now represents any domain of n sites in A, and 
(. . .) is the average with respect to P ( u ;  t ) .  The order parameter m(r)  = (U,) and the pair 
correlation function g ( r )  = G z ( r )  correspond to D = [r)  and D = (0, r},  respectively; 
we write T = (z.!) hereafter, where t = 1.2 refers to the plane of A, and z = ( x ,  y) 
is the location within the plane. Then, some of the steadystate properties of systems such 
as AT defined for the rate (1.3) may be obtained by making a series expansion around 
@ = 0. For example, if one has $ @ A H )  = 1 - @AH + . . . for the rate function, where 
AH H A ( U ' ~ ) -  H A ( u ) ,  one may formally writethat (...) N ( . . . ) p ~ + p ( . . . ) ~  at 
high enough temperature. In particular, it follows that 

g(r) = (qo. l )q3,t))  = m2 t ~g")(o,1; 2, + O(P*) (5, z ( 0 , ~  (3.2) 

~i,i(k)=[(5-ol)w(le;q)+g(''(O,1;0,2)-qoll/(6-ol) (3.34 

where the Fourier transform of g(')(O,l; e, e )  for e = 1 and 2, namely, &,,~(k) 5 
~: ,e '~ .~g( l ) (o ,  e: z, e), is 

and 

ti,z(k) = [w(k;  9) - g("(0,l; 0,Z) + qa]/(6 -a) (3.36) 
respectively (which reduces to @(le; q) for A, i.e. for the case of only one plane). Here, 
a = a(k) = 2[cos(k,) + cos(k,)], and 

4 k ;  q) = [ql - qzcos(~x) - q3cos(ky) 
+q(cos(k, + ky)  + cos& - ky) + cos(2ky))j/(a - 2) (3.4) 

with q 3 (1 - m2)', ql = 2g("(O, 1; i. 1) + Zg(')(O. 1; j ,  l), qz 5 2q +g(')(O, 1; i. 1) and 
q3 q + g"'(0, 1; 5,  1). Therefore, one has at high enough temperature, assuming good 
convergence of (3.2). that the dominant contribution to the spatial correlations in A' is 

g")(O,I; X, e )  Y (QX' - btyz)(x2 + y2)' (3.5) 
where the coefficients at and bt depend on e, i.e. the behaviour differs, but only 
quantitatively for intraplane and interplane correlations. 

This spatial decay of correlations according to a power law (instead of the more familiar 
exponential law) has been found previously for the plane A' (Garrido et al 199Ob) using a 
method similar to that given above. Alternatively, two Langevin equations with a drift term 



Non-equilibrium loyered kmice gases 4677 

have been studied that correspond to anisotropic systems with conserved and non-conserved 
order parameters, respectively; it has been shown (Grinstein 1991, Grinstein etal 1993) that 
a linear coupling between them preserves the power-law behaviour, while this transforms 
into the exponential law for nonlinear coupling (as would correspond, for instance, to the 
DLG in section 1 if one adds sufficient spin flips to the ordinary particle-hole exchanges). 
It is not clear to us whether these results apply to A" and A' given that the total density 
is conserved in these cases. Consequently, it is an interesting fact that (3.5) is valid for 
any two points in A. It follows, in particular, that two points at different planes are also 
correlated at high temperature. This differs, essentially, from the corresponding situation at 
equilibrium (e.g. for E = 0 in A") in which case the layered system behaves precisely as 
the Onsager's square lattice (Achahbar et al 1995a). 

For completeness, we refer also to a variation of A'. That is, the lattice is a d- 
dimensional simple cubic and dynamics consists of a combination of exchanges with 
probability 1 - p and spin flips with probability p. The former are defined in (1.3). i.e. 
they occur completely at random along =kC, and at temperature T otherwise. The flips occur 
with rate p $ [ p H  A (ur) - pH A ( U ) ]  where mr denotes U with U, changed to -ur. This 
case reduces to A' as p 0 (and d = 2). Then, using the same method as above, one 
finds at high temperature that 

(3.6) 
Here, r = 2 p ( l  - p)-I ,  r = lrl, T = (x.y). where x denotes the ordinate along 2, 
y = ( y l ,  yz, . . . , y d - l ) ,  and Q, Q I  and a2 are constant. This interesting result probably 
applies to the DLG variation studied by Binder and Wang (1989). 

4. Conclusion 

Various quantities have been monitored for the two-dimensional DLG, A, and its layered, 
quasi-hvo-dimensional variation, A, within a mean-field approximation. We have observed 
the crossover from equilibrium to non-equilibrium behaviour as the applied electric field 
E is increased. In particular, we have described how the saturating condition (no particle 
may jump against the field, m if E -+ 03). which is often simulated in the computer, is 
reached. This is interesting because laboratory experiments are reported to refer to small 
fields. Alternatively, we have confirmed the MC observation (for E -+ 00) that a novel phase 
transition is exhibited by A at T*(E)  which is below the more familiar critical temperature 
T'(E).  The nature of this transition has been shown to vary with both the dynamical rule and 
the value of E .  It follows that T * ( E )  decreases with increasing E, while T'(E) increases 
with E .  This is probably related to the existence of interplane currents relating the two 
strips that occur for T' < T < T'; however, this phenomenon cannot be investigated by 
the present method. 

Further comparison between A and A has indicated that its steady states differ for any 
E > 0. In particular, T'(E) is larger for A for any value of E > 0, as first observed in 
MC experiments for p > 0.2 and E -+ W. That is, the existence of an additional plane 
makes the DLG less anisotropic. The same is apparent in figure 5(b), for instance. It seems 
related to a difference between the dynamical rules for the two systems: the rule for A is 
a competition between the field EC and the thermal process along j ,  while A involves an 
extra thermal randomness along h that tends to partially compensate the field anisotropic 
effects. 

Consideration of the anisotropic two-temperature model has allowed us to investigate 
spatial correlations in layered systems. The extra degree of freedom that characterizes A 

g(T) o( p ( 1 - 4  exp(-rr'12)[ao + r-'(ap2 - azlylz)l. 
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relieves, in a sense, the condition of constant particle density (which does not need to be 
conserved within each plane). However, we find for A the same kind of slow, power-law 
spatial relaxation found for A. This implies, in particular, that, unlike in equilibrium, the 
two planes of A are strongly correlated due to thermal interplane exchanges in spite of the 
fact that any bond between the planes is broken. 

Finally, we have studied a d-dimensional lattice in which one adds, with probability p, 
spin flips at temperature T to the exchanges (1.3) that occur with probability 1 - p .  That 
is, particle number is not conserved in this case. We find that power-law correlations are 
exponentially modulated for any p # 0. 

J J Alonso et a1 
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